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These notes present some information about difference equations supplementing the
material given in the lectures. The goal is to present some important aspects of the
difference equations which is not thoroughly presented in the textbook.

1. Difference Equations

Difference equations are the discrete-time duals of the differential equations. Our main
interest is the discussion of the Constant Coefficient Difference Equations (CCDE). This
class of difference equations closely resembles the corresponding class in the continuous
time.

A discrete-time LTI system with the input x{n] and output y[n] can be expressed as
follows:

M+ Y ayin—k1= Boan—k]. (M)

M L
It should be noted from y[n]= —Z a yn—kl+ Zﬁk x[n—k] that y[n] is simply a linear
k=1 k=0
combination of the input samples {x[n],x[n—1].....,x[n—L]} and the output samples
{[n—1],y[n—2]....,y[n— M]} . Hence, every output sample y[n] can be easily calculated
if we have the input sequence x{n] (which is the external input to the system) and prior

output samples, that is y[n—k] for k ={1,2,....M}.

L
We temporarily call the right hand side (RHS) of (1) as f[n], thatis f[n]= Zﬁk x[n—k]
k=0
. The actual input to the system is x[#n]; but for the calculation of the output sample ( y[#]

L
), fln]= Zﬁ,‘_x[n — k] is required. Since x[n] is the external input provided to us, we may
k=0

L
equivalently consider that f[n] = Z pB.x[n — k] is the effective input to the system and can

k=0
write the following difference equation for system description:
M
Anl+ Y e n—k]= fln]. 2)
k=1

The mentioned decomposition is also illustrated in Figure 1. Iterating one more time, x[7]
is an arbitrary input which is beyond our control and f[#] is the secondary input derived
from x[n] and processing f[n] through (2) yields y[n].



Fig.1 : A decomposition for the difference equation in (1)

From Figure 1, it can also be noted that the relation between f[n] and x{#n] is convolution

L

type, that is f[n]= g[n]* x[n] where g[n]= Z B,.O0[n—k] is the impulse response of the
k=0

system generating f[n] from x[n].

Without any loss generality, we work on the difference equation

M

y[n]+ Za,{ y[n—k]= f[n] in the remaining part of these notes. Our goal is to outline the
k=1

solution of CCDE difference equations through the study of this form.

2. Homogeneous Solution

We present the topic of homogenous solution with an example. The example is on the
generation of n’th Fibonacci number.

Fibonacci sequence is defined as[1,1, 2,3, 5,8,13,...]. This sequence comes up frequently
in many problems and attracted the attention of public through some popular culture items
(http://en.wikipedia.org/wiki/Fibonacci_numbers_in_popular_culture). Each term in this
sequence is the sum of two terms prior to that term. For example, the term of 5 in
[1,1,2,3,5,8,13,...] is the sum of 2 and 3; the term 8 is sum of 5 and 3 etc. More succinctly,
if we call the »’th term of the sequence as y[n], then the recursion of
vn]= yln=1]+ y[n-2]
generates the sequence of Fibonacci numbers.

To initiate the recursion, we need initial values for y[n] sequence. It should be clear that
two initial values are required to start this recursion. (More generally, for a difference
equation as in (2), we need M initial conditions.) The goal becomes calculation of the n’th
term of the series given the initial conditions, that is the solution of the following difference
equation:

y[n]= y[n—1]+ y[n—2]

M0]=1 : 3)

yil]=1
It should be noted that we have arbitrarily selected to the starting index for the Fibonacci
from 0. Hence, the first Fibonacci number corresponds to y[0] and therefore, two initial

conditions generating the Fibonacci sequence are y[0]= y[1]=1 in (3). We could have
selected any other index such as y[-1]=)[0]=1 or y[5]= »[6]=1. The other choices do

not change the value of the Fibonacci numbers; how changes the way you refer to them,
i.e. changes only their index! Figure 2 shows the effect of two different indices.
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Fig.2 : First 6 elements of the Fibonacci sequence with two different indexing.

The solution of homogenous CCDE equations is accomplished by guessing the structure
of the solution (as in its differential equations counterpart). For the homogenous solution,
we have the external input, that is the forcing term, f[n]=0. This leads to the following

difference equation:
M
yilnl+ X ey y,[n—k]=0. (4)
k=1
In the equation above, y,[n] refers to the homogenous part of the solution. To find the

homogenous solution, we make the guess of y,[n]= Ar". It should be noted that when
A=0 or r=0, y,[n] reduces to the zero sequence, y,[n]=0. It should be clear that

v,[n] = 0 satisfies the difference equations; but having y,[n]=0 for all n values is clearly

not an interesting solution and called the trivial solution. In general, the trivial solution is
not the solution that we are looking for, since this solution does not satisfy the initial
conditions. Our goal is to find the non-trivial solutions of the difference equations so that
we can generate results of interest such as the ones shown in Figure 2.

M
By substituting y,[n]= Ar" into y;,[:1]+Zakyh[n—k]=0, we get the relation

k=1

M M

A(r" + ) a,r"™) = 0. The same equation can be written as Ar"™ (r" +> a,r"*) =0.
k=1 k=1

It should be remember that the recursion holds for all # values. Hence, we need to find 4

M
and r values (y,[n]= Ar") such that 4r" ™" (" + Zakr‘”"‘) =0 is satisfied for all n.
k=1



Since we are looking for non-trivial solution, we can divide both sides of

M
A" (" 4+ k™) =0 by Ar"™ and get the following equation:
k=1
M
Characteristic Equation: " +> o, 7" =0
k=1

M
The roots of this equations satisfy the equation A4r" " (" +Zakr’”_") =0, hence the
k=1
recursion for all n values. For an M'th degree polynomial, there are M complex valued
roots and each one constitutes a mode of the solution. As a summary, any root of the
characteristic equation paired with an arbitrary coefficient constitutes a possible mode for

the non-trivial solution, y,[n]= 4r" .

If we go back the problem of Fibonacci numbers, we have the difference equation of
y[n]= y[n—1]+ y[n—2]. The difference equation does not have any input; hence it is

already a homogeneous difference equation. By substituting y[n] = 4r" into the difference
equation, we can get the characteristic equation as > —r' —1=0. The roots of this

1-V5 1445
2

nd r, > Hence, the general form of the homogenous

equation are r, =

solution is y,[n]=4,1," + A,r," for all n. Since the difference equation to be solved is
already a homogenous difference equation (i.e. there is no particular solution, or the
particular solution is 0 sequence). Then, y[n]= A4,n" + A,r," becomes the solution of the
following difference equation:
yn]=yln—-1]+ y[n-2]
yo]=1 : 3)
vl =1
It should be noted that in the solution of y[n]= A" + 4,r," ; there are two undetermined

coefficients (4,,4,). By properly selecting these coefficients, we can satisfy the initial
conditions:

W0]=4,+4, =1

V= 4n + 4,r, =1
If we do the calculations, we can get the solution for 4,, 4, as follows:

I B R e e e i B

By substituting 4,, 4, into y[n]= A" + A,r,", we can get the final solution as

stn= et —[%] +('+2‘/§J 20 @

Let’s check whether this solution correct or not. To do that we can use Matlab. From Matlab
command prompt, let’s define the function myfunc(n). Myfunc has the only one argument
(which is n) and numerically evaluates y[n] given in (4):



>> myfunc = @(n) 1/sqrt(5)*(-((1-sqrt(5))/2)M(n+1) + ((1+sqrt(5))/2)(n+1));
>> [myfunc(0), myfunc(1), myfunc(2), myfunc(3), myfunc(4), myfunc(5)]
ans =

1.0000 1.0000 2.0000 3.0000 5.0000 8.0000

It seems that we have the right solution. ©

3. Particular Solution

The particular solution of a difference equation is the part of the solution due to the applied
input. For the CCDE difference equation studied here, the particular solution for a specific
class of inputs is examined.

i+ Y e yin—K1= flnl. 5)

When the input f[n] in (5) is of exponential type; that is f[n]= Ar"n"* (K is a non-
negative integer, » is a complex number) the particular solution has the same type. It
should be noted that this class is fairly general and includes the inputs such as polynomial
type input (when »=1) such as unit step, ramp, etc. and exponential functions (when
K = 0)also cosines and sines functions (when r1is purely imaginary).

The particular solution for this class of inputs can be easily found by guessing the form of
the particular solution (which is the exponential family) and finding the undetermined
coefficients. We present some examples to clarify the discussion:

Fibonacci Sequence Generator with External Input: We use the difference equation
generating the Fibonacci numbers; but include the input f[n] on the right hand side of the
difference equation, that is

Nnl=yn—-11+[n—-2]+ f[n].
i. fln]= %2"

We make the following guess for the particular solution y,[#] = 42". When

y,[n] is  substituted into the difference equation, we  get

A2" = A2"" 4+ 42" +%2”. From this equation, we can solve for 4 and get

A= % . The particular solution becomes y ,[n] = 4 2",

3
ii. f[n]=y"
We make the following guess for the particular solution y [n]= A4y". When
y,[n] is substituted into  difference  equation, we  get

Ay" = Ay"" + Ay"* +»". From this equation, we can solve for Aand get
2 2
A= % . The particular solution becomes y ,[n] = # 7" . Note
y -y -1 y -y -1
that the result for part i can be derived from this general result by setting y = 2.



ii.  f[n]= {1 * ‘E)

2

We make the following guess for the particular solution y ,[n] = A{

5]

2
We may think that it is a good idea to use the general result part i1 and write
2
A= % fory = ﬂ; but the value for y is substituted in
y -y —1 2
2
A= 277]1 ; the denominator of A becomes zero! Hence, we can not find
Yy -rv -

a value for A and therefore, y, [n]= A(#J is not the right form for the

particular solution.

Careful readers should have recognize that the guess of A[%} coincides

with the homogenous solution for Fibonacci number generation system. Hence,
with this guess left hand side of the difference equation becomes zero (since it

is the homogenous solution!). Therefore, y,[n] = A(#} can not be correct

guess for the particular solution.

: " 1+ .
As a summary, We recognize that y [n]= Ar, ', where r, = is one of

the roots of characteristic polynomial can not be the right form for the particular
solution. Following the lead from our differential equation knowledge, we

suggest to try y,[n] = Ar,"n as the particular solution.

When y [n]= Ar,"n is substituted in the difference equation, we get
Ar"n=Ar," (n=1)+ 4r," 2(n=2)+n,".
Dividing both sides by (r,)"*, we get the following:
Arzzn =Ar, (n—1)+ A(n—2)+ rzz
An(ry’ =1, =) =—Ar,' =24+r,’

Since 7, satisfies characteristic equation, that is ,” —r,' —=1=0, the left hand

r,+2

side of the equation above is 0. This gives the value of 4 as A = and

n n+2
2
r,+2

we can write the particular solution as y ,[n] =



. . n
iv. fln]l=n’ +E
We make the following guess for the particular solution y [n] = An* +Bn+C
. When y [n] is substituted into difference equation, we get
An* +Bn+C=An-1) +B(n-1)+C+ An—-2)> + B(n-2)+C+n’ +§.
By expanding the squares and collecting like-powers together we get:
(-C+3B—=54)+(64—B)n—An* =n’ +g

Since the equation above should be satisfied for all » values, the solution is
achieved only when the coefficients of the like-powers on each side are

identical:
(-C+3B-54)=0
1
6A4—B)=—.
(64=5)=7 ©)
Ry

. . . 1
The solution of the equation system is A=—E,B=—%,C=8 and the

particular solution becomes y ,[n] = ~5 n’ — % n+8.

v. f[n]=2"+n’ +§

We can make the following guess for the particular solution
y,[n]= An’® 4+ Bn+C+ D2" and try to find the coefficients as we did before.

Instead of doing this, we may recognize that f[n]=2" +n’ +§ is nothing but

the three times of f[n] given in part i plus f[n] given in part iv When we repeat
the calculations, we get 4 equations with 4 unknowns from which we can solve
for unknown; but, since the function D2" and polynomials An> + Bn + C does

not “mix” with each other; we should get the equation set given in (6) for the

solution of A. Hence, A4 =—%,B=—%,C=8. Similarly, the unknown D

should be three times of the coefficient determined in part i. (Why)

This discussion shows (and hopefully convinces you) that the particular
solution of a difference equation obeys linearity. Hence, if several inputs are
superposed at input-side of the system; the particular solution can be formed by
superposition of the individual particular solution to each input.



4. Examples

Example 1: Verify the formula Zk = n(n2+ D .
k=0

n
Let’s call the sum up to n ass[n]= Zk. With this definition, it is easy to see that
k=0

s[n]=s[n—1]+n. Since the difference equation is first order, we need only one initial
condition to uniquely specify the solution. We may set the initial condition as s[0] =0 and
the problem reduces the solution of the following difference equation:

sinl=sn—-1]+n
5[0]=0

We start with the homogenous solution: s,[n]=s,[n—1]. We make the guess of
s,[n]= Ar" and get the characteristic equation as »—1=0. Hence, the homogenous
solution is s,[n] = A4.

For the particular solution s ,[n]=s,[n—1]+n, we make the guess of s, [n]= Bn® +Cn

(Why?). Once the guess is substituted into difference equation, we get
Bn*+Cn=Bn-1)*+C(n-1)+n.
Expanding the brackets, we get 2Bn+C— B =n; from which, we get the particular
1

solutionas B=C = 7
The complete solution of the difference equation is then
S‘-"'””ﬂ[n] = Sh[n] + Sp[n] =A+ % (n2 + n) .

At the final step, we need to set the undetermined coefficient (4) of the homogenous
solution. To do that, we use initial condition s[0] =0 and get 4 =0. The complete solution

becomes s[n]= %(n2 +n)= M.

Example 2: Verify the formula Zkz = wé(bﬂ-l) . (This is left to readers.)
k=0
Example 3: Find the complete solution of y[n] = iy[n —1]+n for n >0 with the initial

condition of y[-1]=10.
Particular Solution: Lety [n]= An+ B, then upon the substitution of the guess

into the difference equation, we get An + B = iA((n -1+ B)+ n for n>0. From



the last equation, we can solve for 4 and Bas 4 = % and B = —g. The particular

solution becomes y ,[n] = %n - g .

Homogenous Solution: The solution of y[n]= %y[n —1]is y,[n]= A[%) .

. ! 4
Complete Solution: The complete solutionis y,[n]+ y [n]= A[ZJ + 5” s At

this point, the reader is advised to substitute the complete solution into the
difference equation and to verify that this solution indeed satisfies the recursion for
any value for 4. To set the value for 4, we need to use the initial condition. We
can use y[—1] =10 (or run the recursion one step from the initial condition and get
y[0]1=10/4) or y[0] or any other subsequent sample to find the value for A. Using

1[0]1=10/4, we get y[0]= ? =A —g and find 4= % The solution becomes

1Y 4 4
=—|—| +—n——, forn=0.
o] [4) 3779

Example 3: Kivanc prefers to have a saving account for the investment of his monthly
income. The monthly return on the saving account ise units, that is the bank gives « -1
TL interest at the end of month for every 1 TL invested in the account. Hence, at the end
of the one month 1 TL becomes a TL. On the account saturation day (or the interest
collection day), Kivanc may withdraw or deposit cash into this account and the amount
remains after withdrawl/deposit operation is invested for another month.

If Kivanc’s initial deposit in the bank account is /_, TL and his account deposit/withdraws
at the end of n’th month is shown with x[#], express Kivanc’s total sum in the bank account
at the n’th month?

Solution: If we denote the total sum at the end of the »’th month as y[»], then on the day
of interest payment, the total sum in the bank account becomes:
yn]=ayn—1]+x{n]
Here, the term of ay[n—1] is due to invested income and x[#] is the deposit/withdraw to
the account on the account saturation day. We also know that the initial sum in the bank
account is / ;. This information sets the initial condition for the difference equation as
V[-1] =1 ,. Kivanc’s problem is then the solution of the following difference equation:
yn]=ay[n—1]+x[n], .
y=1=1, ' 7
Since x[n] is not provided in an analytical form, we can not use guess-substitute-verify

method to find the particular solution; but running the recursion given in (7) a few times
gives us some hint about the form of the solution:



-1=1,
V[0]=al | +x[0]
Y11= a’1_, +ex{0]+ 1]
y[2]=a’ 1 +a’x[0]+ ax[1]+ x[2]- (8)

yinl=a"l, +) xkla""*.n>0
k=0

The solution has a natural interpretation. The first term in the result of
n

y[nl=a"l | + Zx[k]a"_* ,n>0,thatis "I ,, corresponds the contribution of the initial
k=0

investment on the total sum after » months. The initial sum is compounded » times. Each

term of the summation of Zx[k]af""* ,such as x[k]a" ™, is the component of related with
k=0

the £’th month deposit x{k] (or withdraw if it is a negative value) at the »’th month.

n

It should be clear that a"/ | corresponds to the homegenous solution and Zx[k]af”"“'
k=0

corresponds to the particular solution. Indeed, the particular and homegenous solutions for
this problem given in (8) is rather special. At this point, we would like to note that the
particular solution of a difference equation is not unique; since by adding a multiple of a
homogenous solution to a particular solution; we can get another particular solution.
Therefore, it is proper to denote the particular solutions with the article of “a” and state
that “a particular solution to this problem is ...” instead of “the particular solution ...”

Returning back to the problem, we can note that the given particular solution in (8) , that

n
is Zx[k]a""" for n =0, is the solution when the initial deposit is equal to zero. (To see
k=0

this, just insert /|, =0 in y[n]=a"l, +Zx[k]a"""',n >0). This particular solution is
k=0

called zero-state solution. (This should ring some bells for the students who are not atonal

to the circuit theory courses.)

Similarly, in the absence of input, that is x[n] =0 for n>0; the solution is only due to

initial deposit /_,; hence the special homogenous solution of y[n]=ea"l | is called the
zero-input solution.

Let’s try to drive these results using the approach we have discussed in these notes. The
main idea is to decompose the input in terms of impulses and use the impulse response of
the system to find the zero-state solution. (One more time, the zero-state solution is a
special particular solution.)
Impulse response calculation: It should be remembered that impulse response is
calculated when the system is initially at rest.



h[n] = ah[n—1]+ d[n)

h-1]1=0 '
For the calculation of the solution, we make the following guess /[n]= Ar"u[n]
and substitute the guess into the difference equation and get
Ar"u[n] = adr"u[n — 1]+ S[n].
It should be remembered the recursion in (9) should be valid for all »>0.When
we set n=0 in Ar"u[n]=adr"'u[n—1]+05[n], we get A=1. For n>1, the
equation of Ar"u[n] = aAr"'u[n—1]+o[n] reduces to r" = ar"" from which we
can get r=a. Hence, we have found that the choice of 4=1 and r=a in
h[n]= Ar"u[n], results in the impulse response, A[n]= a"u[n].

€)

Expressing the input x[n| in terms of impulses: The input x[n] can be written in

terms of impulses as x[n]:Zx[k]5[n—k]. Once this is done, the difference
k=0
equation in (7) can be written as follows:

y[n]=ay[ln—-1]+ gx[k]é'[n k] (10)
M-11=1,

Finding a particular solution: A particular solution of (10) can be written from

the impulse response. When it is written, we gety [n Zx[k h[n—k]. (Please
k=0

read part v. of particular solution example titled “Fibonacci Sequence Generator
With External Input”, if you are having difficulty at this step.) So the particular

solution is y [n]= Z x[kh[n—k] = Zx [kla" " uln—k] Zx [kla"™" .

k=0 k=0

Finding the homogenous solution: The homogenous solution for
Nnl=ayn—1]+xn]is y,[n]=Aa".

Finding the complete solution: The complete solution becomes
ynl=y,[n]+y,[n]=Aa" + Y xkla"™ .

We are almost there! Since y[-1]=7_,, we have A=al_, (or you may use
V0] =ad_, +x[0] and get the same value for A). Substituting the value for 4 in

n
the complete solution, we get y[n]=1_a"" + Zx[k]a""" for n >0, which is the
k=0
result that we are trying to show.

Example 4: Beren (a friend of Kivanc) wants to calculate the digit sum of the non-negative
integers with n decimal digits. As an example, for n =1, the set of integers with a single
decimal digit are {0,1,2,3,4,5,6,7,8,9} and their sum is 45. For n =2, the set becomes

{00,01,02,03,04,05,06,07,08,09,10,11,....99};  the sum  of their digits 1is



450 +10x0 +10x1+10x2 +...10x9 =900 . (why?) The question is to find the expression for
the digit sum of n digit non-negative integers.

Solution: Let the digit sum for n digit non-negative integers be s[n]. We know that
s[1] =45 and s[2] =900. We need the find a relation between the elements of the sequence
s[n]. The relation can be given as (after some thought) as follows:
s[n]=10s[n—1]+10""'45

To check the relation, we can calculate s[2] =10s[1]+ 450 using s[1] =45. This gives the
value of s[2]=900, matching Beren’s calculation in the problem definition. If the
recursion is repeated for the next digit, we get s[3] = 10s[2]+ 4500 =13500. To verify this
result, we can use the following Matlab line:

>> vec=0:999; vec2 = num2str(vec); dum = abs(vec2); dum(dum==32)=[]; dum= dum-48;
>> sum(dum)

ans =
13500

(The Matlab line can be a little cryptic at first sight. To better understand the code, please
experiment with it.) It seems that the recursion gives the correct results.

Hence, Beren’s problem reduces to the solution of the following difference equation:
s[n]=10s[n—1]+10""45, n>2
s[1]=45

Approach 1: The homogenous solution is s,[n]= A410". A particular solution (not the
particular solution) is s ,[n] = Bnl0". By substituting s [n] into the difference equation,

we can get B=4.5. Then the complete solution is s[n] = 410" +4.5#10". To satisfy the

condition of s[1]=45, we need to set 4 =0. The final solution is then s[n]=4.5710" for
n=l1.

Approach 2: Let’s use the results of Example 3 (Kivanc’s problem) for the solution. To
do that we call the sequence 10”45 for n > 2 as the input x[n]. The complete solution is
then

s(n)=Aa" + ) x{kla"" ,n>1
k=1

and we have a =10.

n=k

Let’s calculate the zero-state part of the solution, i.e. Zx[k]a . Since, « =10; and

k=1

x[n]=4510"" = 4.5x10", Zx[k]af”‘* = 4.5210*10”“’ =4.5x10" Zl =4.5(n-1)10" for
k=1 k=1 k=1
n=l.

Then the solution becomes s[n]= A10" +4.5(n—1)10",n>1. Yet, there is an
undetermined coefficient (A4) to determine. Using s[1]=45 together with



s[1]= 410" +4.5(1—1)10"' = 4, we can get the unknown as A4 =4.5. The final solution
becomes  s[n]=4.510"+4.5(n—110",n>1 which can be simplified to
s{n]=4.5n10",n>1.

Example 5: Tugba (a friend of Kivanc) has a determinant problem. Her problem is to
calculate the determinant of the following N X N Toeplitz tri-diagonal matrix M:

a b 0 .. 0 0 0
c a b .. 0 0 O
0 ¢c a b I
Myxy =|: & 0~ - H
0 0 c a b 0
0 0 .. 0 ¢c a b
0 0 .. 0 0 c A'NyxN
Tugba expands the determinant into its co-factors along the first row,
a b .. 0 0 0 c b .. 0 0 0
c a b : : : 0 a b : P
[Myxn| = a T i|—b|: L
0O .. ¢ a b O 0 c b 0
0 0 ¢ b 0 . 0 ¢ b
0 0 0 ¢ a 0 w 0 0 ¢ a

and denotes |M | with Dy, i.e. Dy = |Mpyxn|. Then observes that, the expression above
can be written as

c b .. 0 0 O

0 a b : : :
Dy =aDy_y —b|: o

0 w ¢ a b 0

0 we. 0 ¢ a b

0 we 0 0 ¢ a

To calculate the minor, the unknown determinant given above; Tugba expands the
determinant along the first row, one more time:

c b . 0 0 0

0 a b i H H a b H i 0 b i i
H H i|l=c il=b i
0 w € a b 0 c a b 0 0 c a b 0
0 we. 0 ¢ a b we. 0 ¢ a b 0 0 ¢ b
0 w 0 0 ¢ a w 0 0 ¢ a 0 0 0 ¢ a

Finally, this calculation results in



0
0
0

c
0
0

c
0

b
a
c

0
b

a

= cDy_5.

Combining all the results, she gets the following recursion

DN = aDN_l - bCDN—Z

with the initial conditions of D; = a and D, = a® — bc for the determinant expression.

As an example, let’s take a = 2, b = 1 and ¢ = —3. With these parameters, the recursion

becomes

Dy = 2Dy_1 + 3Dy_s,

N=3

The solution is then Dy, = i(BN*'1 + (—=1)M). Good for Tugba!



